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Abstract
We introduce a class of finite-dimensional nonlinear superalgebras L =
L0̄ + L1̄ providing gradings of L0̄ = gl(n) � sl(n) + gl(1). Odd
generators close by anticommutation on polynomials (of degree >1) in the
gl(n) generators. Specifically, we investigate ‘type I’ super-gl(n) algebras,
having odd generators transforming in a single irreducible representation of
gl(n) together with its contragredient. Admissible structure constants are
discussed in terms of available gl(n) couplings, and various special cases and
candidate superalgebras are identified and exemplified via concrete oscillator
constructions. For the case of the n-dimensional defining representation, with
odd generators Qa, Q̄

b and even generators Ea
b, a, b = 1, . . . , n, a three-

parameter family of quadratic super-gl(n) algebras (deformations of sl(n/1))
is defined. In general, additional covariant Serre-type conditions are imposed
in order that the Jacobi identities are fulfilled. For these quadratic super-
gl(n) algebras, the construction of Kac modules and conditions for atypicality
are briefly considered. Applications in quantum field theory, including
Hamiltonian lattice QCD and spacetime supersymmetry, are discussed.

PACS numbers: 02.20.−a, 03.70.+k, 11.30.Pb, 12.38.Gc

1. Introduction

The interplay between the application of symmetry principles to models of physical systems,
and study of the classification, properties and representation theory of underlying algebraic
structures, has long been a major theme in mathematical physics. A broad spectrum of
generalized symmetry algebras is under active study, including infinite-dimensional algebras
and superalgebras, deformations of universal enveloping algebras, and various ternary and
other non-associative algebras. Although the general study of nonlinear Lie (super)algebras
belongs to abstract deformation theory, in specific contexts enough structure exists to allow
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progress on classification and representation theory. For example, the so-called W -(super)
algebras are rigidly constrained by their origins in Hamiltonian reduction of constrained
systems on Lie–Poisson manifolds (for references see below).

In this spirit, we study in this paper a class of finite-dimensional nonlinear superalgebras,
with attention to their covariant closure relations, and which are defined algebraically, without
reference to additional structure. Namely, we consider superalgebras (Z2-graded algebras)
L = L0̄ + L1̄ with even subalgebra L0̄, and odd subalgebra L1̄, with defining relations of the
form:

[L0̄, L0̄] ⊆ L0̄ [L0̄, L1̄] ⊆ L1̄ {L1̄, L1̄} ⊆ U(L0̄). (1)

Such ‘nonlinear super-L0̄ algebras’ possess odd generators L1̄ whose anticommutation
relations generalize the defining relations of Lie superalgebras in that they close only in the
universal enveloping algebra U(L0̄), that is, on polynomials (of quadratic or higher degree)
in the even generators L0̄. In this work we take the latter to be the classical Lie algebra
L0̄ = gl(n) � sl(n) + gl(1).

Study of the classification of such superalgebras devolves to examination of possible
L0̄-modules L1̄, and admissible structure constants (1) which are consistent with the Jacobi
identities. This is taken up in section 2 below, where we discuss the structure of candidate
polynomial super-gl(n) algebras of ‘type I’, that is, where L1̄ consists of the direct sum
of an (arbitrary) irreducible L0̄-module {λ} together with its contragredient representation
{λ̄}, denoted here by glk(n/{λ} + {λ̄}) (where k is the maximal degree within U(L0̄) of the
polynomials [L1̄, L1̄]). In general, many types of structure constant are, in principle, allowed
(identified as tensor couplings). These must be enumerated in specific cases, and the Jacobi
identities imposed in order to identify viable solutions. Examples include odd generators
in totally antisymmetric and totally symmetric tensor representations, together with their
contragredients. In section 3 concrete low-rank examples of this type are provided via explicit
oscillator constructions, together with generalizations including parafermionic realizations.

The examples of section 3 fulfil the desired anticommutation relations because of the
structure specific to the oscillator realizations. In section 4, a more complete treatment is
given, for one special case, by examination of the quadratic super-gl(n) algebras, with even
generators Ea

b, 1 � a, b � n in the Gel’fand basis, and odd generators Qa, Q̄
b in the defining

n-dimensional representation of gl(n), and its contragredient. A three-parameter family of
quadratic algebras gl2(n/{1} + {1̄})a,α,β is identified, which closely parallels the well-known
linear super-gl(n) algebra, namely the simple Lie superalgebra sl(n/1) ≡ gl1(n/{1} + {1̄}).
In general, the Jacobi identities are satisfied provided additional covariant Serre-type relations
of the form Ea

bQ̄
b = qQ̄a,QaE

a
b = Qbq hold in the enveloping algebra, for some gl(n)-

invariant q = α〈E〉 + β11, where 〈E〉 = Ec
c. In section 4, an outline of the construction of

Kac modules is also given, together with the derivation of a necessary condition for typicality.
In the concluding remarks (section 5), additional motivation for the investigation of

polynomial superalgebras is discussed, in relation to symmetries of classical and quantum
systems, including detailed comparisons with previous studies in the literature. (For reviews
and relevant papers on the structure of the W -(super) algebras see [1–4]. Various contexts in
which polynomial algebras have been introduced include classical and quantum mechanics and
(quasi)-exactly solvable potentials [5–8], supersymmetric quantum mechanics [9], quantum
many-body theory [10–12] and relativistic wave equations [13, 14]). Applications of the
present work include supersymmetry between colour singlet baryon and meson states in
Hamiltonian lattice QCD [15–19], and (for n = 4) new classes of conformal spacetime
supersymmetries [20]. The appendix provides notational conventions for partition labelling of
finite-dimensional irreducible tensor representations of gl(n) (appendix A.1), and generalized
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Gel’fand notation for the generators (appendix A.2). In appendix A.3 details of the fermionic
oscillator construction for the case gl2(n/{3} + {3̄}) are given, allowing (indecomposable)
modules to be identified in a gl(n) basis, both on the fermionic Fock space, and via the adjoint
action on the associated Clifford algebra (see tables 1 and 2 for the n = 1 and n = 2 cases).
Finally (appendix A.4), for the case n = 4 the relation between the algebras gl2(4/{13}+ {13})
(discussed in section 3) and the family gl2(4/{1}+ {1̄})a,α,β (section 4) is studied. (In addition
to the above literature on physical applications of polynomial (super) algebras, the text of
the paper contains extensive citations, for example, to provide background on group theory
(see, for example, [21]; section 4, appendices A.1–A.3), salient references on parastatistics
(section 3), and on the theory of characteristic identities for generators of simple Lie (super)
algebras (sections 4 and 5, appendix A.2)).

2. Polynomial super-gl(n) algebras glk(n/{λ} + {λ̄})
In this section generic polynomial super-gl(n) algebras will be studied from the point of
view of admissible structure constants in the generalized sense. From the graded Jacobi
identities (see section 4), the odd generators form an L0̄-module with respect to (the adjoint
action of ) the even subalgebra, and {L1̄, L1̄} transforms under adL0̄

in the (symmetric) tensor
product L1̄ ⊗ L1̄ of the odd L0̄-module L1̄ with itself. Correspondingly, in view of the
the Poincaré–Birkhoff–Witt theorem for the structure of the enveloping algebra, monomials
in the even generators transform as symmetric tensor powers of the adjoint representation.
Thus generalized structure constants3 can only exist with the correct polynomial degree k if the
corresponding symmetric kth tensor power of the adjoint representation adL0̄

contains common
irreducible submodules, with the branching multiplicity of the latter determining their number
and type.

Study of the classification of such superalgebras devolves to examination of possible
L0̄-modules L1̄, and admissible structure constants (1). Similar questions arise in the study of
simple Lie superalgebras [22] (where L0̄ replaces U(L0̄) in (1) above). An analogous situation
is addressed in the Witt construction [23], where one considers Lie algebras associated with a
given Lie algebra L0̄ extended by a certain L0̄-module (a trivial extension being the semidirect
product, with the module given the structure of an Abelian algebra)4. These considerations
are more tractable if we turn to the ‘type I’ super-gl(n) algebras: the L0̄-module L1̄ is the
sum of a single irreducible representation and its contragredient. The Z2-grading is thus
inherited from a Z-grading of L, associated with the spectrum of the adjoint action of the
abelian summand of gl(n) � sl(n) + gl(1). Thus L = L−1 + L0 + L1, with L0̄ = L0 and
L1̄ = L−1 + L1. This entails {L±1, L±1} = 0, and {L+1, L−1} ⊂ U(L0). Without loss of
generality, we may assume that L+1 is an irreducible representation of the semisimple part
sl(n), with L−1 the corresponding contragredient. Now for semisimple Lie algebras, Joseph’s
theorem [25] states that the enveloping algebra U(L0) is isomorphic as an L0-module, to the
sum over all dominant integral weights, of the tensor product of the corresponding (finite-
dimensional) highest weight module, with its contragredient. Thus, it is possible to investigate
whether the anticommutators {L+1, L−1} can be associated with a unique element of U(L0).

3 If {Ta} is a basis for the even subalgebra L0̄ and {Qα} a basis for L1̄, then the (anti)commutation relations (1) take
the form

[Ta, Tb] = fab
cTc [Ta,Qβ ] = faβ

γ Qγ {Qα,Qβ } = fαβ
c1c2 ...Tc1 Tc2 . . . + · · ·

where there may be lower degree terms in the last line. Thus {Qα} form a tensor operator under the action of L0̄ and
the anticommutator {Qα,Qβ } transforms in the tensor product of the relevant representations of the even subalgebra.
4 This construction has recently been considered in connection with embeddings of quantum algebras [24].
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However, as Joseph’s theorem does not mandate any relation between the polynomial degree
within U(L0) of elements of a given tensor product contributing to the sum, we proceed more
generally. Let, then, {λ} denote a dominant integral weight of gl(n) and {λ̄} the corresponding
contragredient; where no confusion arises, these symbols will also stand for the character
of the corresponding irreducible, finite-dimensional highest weight module (for notation see
appendix A.1)5. The adjoint representation of gl(n) is the reducible representation {1̄} · {1}
(corresponding to the tensor product of the n-dimensional defining representation with its
contragredient) with irreducible parts {1̄; 1} + {0} reflecting the reduction to sl(n) + gl(1).
According to the previous discussion, distinct types of structure constant will be determined
by the branching multiplicity of those irreducible components of the symmetric kth tensor
power of the adjoint representation, which are in common with the irreducible modules
occurring in the decomposition of the tensor product {λ̄} · {λ}. Let � be the weight of {λ} as
a partition and k be the polynomial degree of nonlinearity in the enveloping algebra of gl(n)

characterizing the algebra. Then we have

{λ̄} · {λ} =
∑
µ,ν

nλ
µν{µ̄; ν} ({1̄} · {1}) ⊗ {k} =

∑
µ,ν

nk
µν{µ̄; ν}. (2)

The multiplicities nk
µν, n

λ
µν are defined in appendix A.1 in terms of the standard Littlewood–

Richardson coefficients. In appendix A.1 it is shown that nk
µν � nλ

µν provided k � �, and
moreover if � > k, then nk

µν = 0 for µ, ν � k + 1, . . . , �. In the latter case, generalized
structure constants for the corresponding symmetry types {µ̄; ν} arising from {λ̄} · {λ} do not
exist.

To complete the discussion of couplings in specific cases, it is necessary to adopt an
explicit notation. Recall the well-known presentation of gl(n) via the Gel’fand generators
Ea

b, 1 � a, b � n (see, for example, the first line of (10) below). Define the matrix powers
(Ek+1)ab = (Ek)acE

c
b in the obvious way, and their traces 〈Ek〉 = (Ek)cc (the standard

Casimir invariants, see appendix A.2). Bearing in mind Joseph’s theorem [25], the following
generalized permanents [28] provide a suitable spanning set for U(gl(n)): for {λ} � �, and
{µ} an �-part partition (of weight k, with nonzero parts augmented by zeroes as necessary),
define

[{λ}; {µ}]a1a2...a�
b1b2...b�

= 1

�!2

∑
ρ,σ∈S�

χλ(ρσ−1)(Eµ1)aσ1
bρ1

(Eµ2)aσ2
bρ2

. . . (Eµ�)aσ�
bρ�

. (3)

Here χλ is the irreducible character of S� corresponding to the class λ, and (E0)ab ≡ δa
b. Thus

{λ} determines the symmetry type {λ̄} · {λ}, and {µ} the distribution of tensor contractions,
for polynomials in the generators Ea

b belonging to the enveloping algebra U(gl(n)). In this
notation the matrix powers are, of course, (Ek)ab ≡ [{1}; {k}]ab, while the Casimir operators
are simply found by contraction of any [{λ}; {µ}] with

�λ
a1a2...a�

b1b2...b�
= [{λ}; {0}]a1a2...a�

b1b2...b�
.

For the cases considered in the following, elementary tensor notation suffices for explicit
constructions. As an example let us analyse in detail the case k = � = 3 and {λ} = {2, 1}.
5 We label highest weight representations, and where no confusion arises their corresponding characters, by partitions
{λ} = {λ1, λ2, . . . , λn} corresponding to the symmetry type of irreducible tensors. Partition labelling for irreducible
representations of simple Lie algebras is developed in [26]. Aspects of this notation for gl(n) and sl(n), including the
various ‘products’ ·, ⊗, ◦, are discussed in appendix A.1. In particular, a composite partition {ρ̄; σ } corresponds to
an irreducible tensor of contravariant symmetry type ρ, and covariant symmetry type σ , and is traceless with respect
to contractions between contravariant and covariant indices. (See appendix A.1, and also [27].)
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Explicitly, we have (see appendix A.1)

{2, 1} · {2, 1} = {2, 1; 2, 1} + {2̄; 2} + 2{1̄; 1} + {0}
({1̄} · {1}) ⊗ {3} = {3̄; 3} + {2, 1; 2, 1} + {1, 1, 1; 1, 1, 1} (4)

+ 2{2̄; 2} + 2{1, 1; 1, 1} + 4{1̄; 1} + 3{0}
from which, at the level of reduced matrix elements, at degree three, the putative cubic
algebra gl3(n/{2, 1} + {2, 1}) has 10 types of structure constant (or nine free parameters
for the associated reduced matrix elements, up to overall normalization), corresponding
to the maximum multiplicities of the common irreducible components of the above two
decompositions (excluding additional structure constants arising from lower degree). To
complete the construction of couplings for this case, define the following objects in the
enveloping algebra:

{F · F ′ · F ′′}abc
pqr ≡ (

Fa
pF ′b

q + Fb
pF ′a

q

)
F ′′c

r − (
Fc

pF ′b
q + Fa

pF ′c
q

)
F ′′a

r + · · · (5)

being of mixed symmetry type [{2, 1}; {µ1, µ2, µ3}] with respect to contravariant and covariant
indices (where ‘· · ·’ represents three additional quartets of terms establishing mixed symmetry
with respect to the pqr label permutations (the terms shown explicitly possess mixed symmetry
with respect to abc). F,F ′, F ′′ stand for Eµ1 , Eµ2, Eµ3 , respectively with µ1 + µ2 + µ3 = 3).
Such terms exist by (2), and the 10 couplings at cubic degree required by (4) are
schematically6

{E · E · E} {E2 · E · δ} {E · E · δ}〈E〉
{E3 · δ · δ} {E2 · δ · δ}〈E〉 {E · δ · δ}〈E2〉 {E · δ · δ}〈E〉2 (6)

{δ · δ · δ}〈E3〉 {δ · δ · δ}〈E2〉〈E〉 {δ · δ · δ}〈E〉3

where { · · · } indicates mixed permutation symmetry as in (5) above.
It is noteworthy that the ‘leading’ irreducible component {2, 1; 2, 1} has unit multiplicity

in both expansions in (4) above, corresponding to a single reduced matrix element (which
can be set to 1 by a choice of overall normalization); from appendix A.1, it is apparent that
nλ

λλ = 1 in general (so the same count of the ‘leading’ component holds whenever � = k).
This circumstance is intimately related to a canonical construction (outlined in appendix A.2,
valid for all simple Lie algebras), in which the generators and defining relations of gl(n) may
be presented in terms of components Eabc...

pqr... of an arbitrary tensor operator (of any rank
and symmetry type), and the defining relations presented in a manner consistent with this.

3. Low-rank examples and oscillator constructions

The general discussion of the previous section has identified a large class of candidate nonlinear
super-gl(n) algebras on the basis of structure constants which are admissible on the grounds of
gl(n) invariance. This guarantees the validity of the Jacobi identity involving [L0̄, {L1̄, L1̄}].
The remaining odd Jacobi identity involving [L1̄, {L1̄, L1̄}] can be best addressed in specific
low-dimensional cases, or via explicit constructions, to which we now turn.

Consider, for example, the simplest case n = 1, and the polynomial superalgebra
glk(1/{�} + {�̄}). The Abelian algebra gl(1) has a single generator K, and one-dimensional
representations (labelled as type {�}).7 With odd generators denoted Q̄ and Q we have the
defining relations (taking � = 1 without loss of generality)

[K,Q] = −Q [K, Q̄] = Q̄ {Q̄,Q} = f (K)

6 Traceless forms of the objects (5) can, of course, be constructed if required.
7 Here � is simply an additive charge quantum number.
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for some polynomial f of degree k, together with {Q,Q} = {Q̄, Q̄} = 0. The graded Jacobi
identity entails

[Q, {Q̄,Q}] = [{Q, Q̄},Q] − [Q̄, {Q,Q}] = [{Q, Q̄},Q]

whereupon f (K) is central, f (K) ≡ H . Thus, we have trivially regained the structure of the
Lie superalgebra gl(1/1) (the algebra of supersymmetric quantum mechanics), with defining
relations

[K,Q] = −Q [K, Q̄] = +Q̄

[H,Q] = 0 [H, Q̄] = 0

[H,K] = 0 and {Q̄,Q} = H.

For the remainder of this section we consider examples of polynomial super-gl(n)

algebras via concrete oscillator realizations, in which there is enough structure to evaluate
the anticommutator of odd generators explicitly. This will verify, for these cases, the general
analysis of section 2 above, and at the same time guarantee all Jacobi identities. Thus, we take
generating sets ai, a

i , i = 1, 2, . . . , n, bj , b
j , j = 1, 2, . . . , n of either fermionic or bosonic

creation and annihilation operators, respectively, where ai ≡ ai
†, bi ≡ bi

†, satisfying the
canonical (anti-)commutation relations

{ai, a
j } = δi

j 11 {ai, aj } = {ai, aj } = 0 (7)

[bi, b
j ] = δi

j 11 [bi, bj ] = [bi, bj ] = 0 (8)

respectively (below we also consider parastatistics realizations). The even generators for gl(n)

are the usual quadratic combinations giving the Gel’fand basis,

Ei
j = aiaj + const 11 or Ei

j = bibj + const 11 (9)

with[
Ei

j , E
k
�

] = δj
kEi

� − δi
�E

k
j

[
Ei

j , c
k
] = δj

kci
[
Ei

j , ck

] = −δi
kcj (10)

where c ≡ a or b. The odd generators of the nonlinear superalgebras will be composites
in the bosonic and fermionic oscillator modes, transforming in tensor representations of
various types. In particular, monomials purely in fermionic or bosonic creation operators are
automatically antisymmetric or symmetric in permutations of their mode labels due to their
mutual anticommutativity or commutativity, respectively (monomials in the corresponding
annihilation operators transform contragrediently). It is thus natural to consider such
monomials as candidates for odd generators of super-gl(n) algebras.

To set the context for the generalizations under investigation, we consider firstly the
rank 1 and 2 cases, with either {λ} = {1�} (fermions), or {λ} = {�} (bosons), � = 1, 2.
Surprisingly perhaps, at this algebraic level, particle statistics does not preclude utilization of
bosonic oscillators as odd generators, and it will turn out that the k = 1 cases are well-known
constructions (there are also k = 2 generalizations). To make the discussion complete, we
also consider polynomial algebras with generators closing on commutation relations, and also
polynomial superalgebras with even part larger than gl(n).

The rank � = 1 case is familiar in the linear situation, and corresponds simply to enlarging
the bilinear oscillator gl(n) generators by appending the mode operators themselves. Take
firstly the bosonic generators under the ‘natural’ commutator bracket relations. Clearly
bi, bj , 11 and Ei

j (see (8), (10) and (9) above) generate the standard semidirect product
of the Weyl–Heisenberg algebra with the automorphism algebra gl(n) (extendible to sp(2n),
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see below). In the context of nonlinear constructs, there is also the remarkable Holstein–
Primakoff–Dyson [29] realization, which ‘dresses’ the oscillator modes so that linear closure
on gl(n + 1) is obtained:

En+1
i =

√
p11 + 〈E〉bi Ei

n+1 = bi
√

p11 + 〈E〉
for some parameter p.

As is well known, the same bosonic modes are natural candidates for odd generators
of a superalgebra. In this case, a super-gl(n) algebra is not achieved, as the ‘unnatural’
choice of anticommutator will generate new operators S̄ij ≡ 1

2 {bi, bj }, Sij ≡ 1
2 {bi, bj }, as

well as Ei
j ≡ 1

2 {bi, bj } (see (9) above). However, instead closure is achieved on the enlarged
automorphism algebra sp(2n) in the ‘even’ (bilinear) generators, and hence on the natural
superalgebra osp(1/2n) including the oscillator modes themselves.

The situation with fermionic oscillators is entirely parallel to the bosonic case. Choosing
closure of the oscillator modes by anticommutators reproduces the canonical anticommutation
relations, giving the complex Dirac or Clifford algebra generated by ai, aj , 11 together
with automorphisms generated by Ei

j (extendible to so(2n), see below). Again, there is
a construction analogous to the Holstein–Primakoff–Dyson realization [30–33], this time
formally polynomial rather than in an extension of the enveloping algebra, whereby the
fermionic generators can be appropriately ‘dressed’ so as to achieve closure, this time on the
Lie superalgebra sl(n/1):

En+1
i =

√
p11 − 〈E〉ai Ei

n+1 = ai
√

p11 − 〈E〉
for some parameter p. Finally the choice of ‘unnatural’ commutator brackets for the fermionic
modes will generate, as well as Ei

j ≡ 1
2 [ai, aj ] (see (9) above), new operators Āij ≡ 1

2 [ai, aj ],
Aij ≡ 1

2 [ai, aj ] which together with ai, aj close on the enlarged automorphism algebra
so(2n + 1). For the choice of commutation relations, the rank � = 2 case is subsumed in
the above discussion of � = 1, in that closure on sp(2n) ⊃ gl(n), so(2n) ⊃ gl(n) was
already found for bosons and fermions respectively via the symmetric and antisymmetric
rank 2 tensors S and A.

With the exception of the Holstein–Primakoff–Dyson realization and its superalgebra
analogue, all examples so far have been for up to quadratic realizations of classical Lie
(super) algebras (k = 1). This subject can be refined to deal with many cases of subalgebra
chains, and especially to discuss real forms [34, 35]. On the other hand, the behaviour of the
S and A tensors under anticommutation with their contragredients furnishes a first example of
polynomial superalgebras, although not of Z2 graded super-gl(n) type:

{S̄(ij), S(pq)} = 1
2 (E · E)(ij)

(pq) + 1
2 (E · δ)(ij)

(pq) + δ(ij)
(pq)

{Ā[ij ], A[pq]} = − 1
2 [E · E][ij ]

[pq] + 1
2 [E · δ][ij ]

[pq] − δ[ij ]
[pq]

(11)

where (E ·E), (E · δ), [E ·E] and [E · δ] are the strength 1 minimal combinations8 possessing
the appropriate (anti)symmetry (compare (3) above),

(E · E)(ij)
(pq) = (

Ei
pEj

q + Ej
pEi

q + Ei
qE

j
p + Ej

qE
i
p

)
(E · δ)(ij)

(pq) = (
Ei

pδj
q + Ej

pδi
q + Ei

qδ
j
p + Ej

qδ
i
p

)
δ(ij)

(pq) = δi
pδj

q + δi
qδ

j
p

[E · E][ij ]
[pq] = (

Ei
pEj

q − Ej
pEi

q − Ei
qE

j
p + Ej

qE
i
p

)
[E · δ][ij ]

[pq] = (
Ei

pδj
q − Ej

pδi
q − Ei

qδ
j
p + Ej

qδ
i
p

)
δ[ij ]

[pq] = δi
pδj

q − δi
qδ

j
p.

8 For simplicity, the gl(n) generators are defined as Ei
j ≡ bibj , Ei

j ≡ aiaj in these equations (see (9)).
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Including also the mutual commutativity of the tensor components of each of these tensors
separately, gives a structure of mixed grading resembling a nonlinear colour (super)
algebra9.

For the remaining two concrete examples in this section, we move to the rank � = 3 case,
with fermionic oscillator realizations for either {λ} = {13}, k = 2 or {λ} = {3}, k = 2. These
two cases typify several infinite families of super-gl(n) algebras with analogous structure (in
which k grows with �). Further examples, including {λ} = {2, 1} at rank 3 in a parafermionic
construction, and higher-dimensional bosonic cases, are discussed in more general terms in
the conclusion of this section.

For gl2(n/{13} + {13}) define the odd generators

Q̄[ijk] = aiajak Q[pqr] = apaqar (12)

together with

Ei
j ≡ aiaj (13)

(see (9)). Then, in appropriately symmetrized tensor notation, the defining relations of this
realization of gl2(n/{13} + {13}) become10

{Q̄[ijk],Q[pqr]} = − 1
4 [E · E · δ][ijk]

[pqr] + 1
2 [E · δ · δ][ijk]

[pqr] − δ[ijk]
[pqr]

{Q[ijk],Q[pqr]} = 0 {Q[ijk],Q[pqr]} = 0[
Ei

j , Q̄
[k�m]

] = δj
kQ̄[i�m] + δj

�Q̄[kim] + δj
mQ̄[k�i]

[
Ei

j ,Q[pqr]
] = −δi

pQ[jqr] − δi
qQ[pjr] − δi

rQ[pqj ].

(14)

Here [E · E · δ] and [E · δ · δ] are the appropriate strength 1 minimal combinations possessing
the required antisymmetry (compare (3) above),

[E · E · δ][ijk]
[pqr] = (

Ei
pEj

q − Ej
pEi

q − Ei
qE

j
p + Ej

qE
i
p

)
δk

r + · · ·
[E · δ · δ][ijk]

[pqr] = Ei
p

(
δj

qδ
k
r − δj

rδ
k
q

)
+ · · · (15)

δ[ijk]
[pqr] = δi

p

(
δj

qδ
k
r − δj

rδ
k
q

)
+ · · · .

Allowing for cyclic permutations on ijk and pqr, [E · E · δ] contains a total of 4 × 9 = 36
terms, [E · δ · δ] contains 9 × 2 = 18 terms and [δ · δ · δ] just 3 × 2 = 6 terms.

For gl2(n/{3} + {3̄}) introduce m = 3n and corresponding fermionic oscillators aiA, ajB ,
i, j = 1, . . . , n and A,B = 1, 2, 3. We take (see (9))

EiA
jB ≡ aiAajB Ei

j = EiA
jA FA

B = EiA
iB (16)

for the generators of gl(3n), gl(n) and colour gl(3), respectively. Then with the help of the
totally antisymmetric alternating tensor εABC define

W̄ (ijk) = εABCaiAajBakC W(pqr) = εABCapAaqBarC. (17)

9 The natural graded structure when both fermionic and bosonic oscillator modes are present, where closure on both
linear and bilinear combinations is required, is indeed that of a Z2 × Z2 graded colour superalgebra. (See [36] and
references therein.)
10 Following the arguments of section 2 above, in this case there are potentially eight couplings, or seven arbitrary
coefficients up to normalization (see appendix A.1 and (20)).
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Clearly, the ‘colour singlet’ combinations W̄ (ijk) and W(pqr) are symmetric in the mode labels,
and elementary calculation leads to the following, appropriately symmetrized, gl2(n/{3}+{3̄})
defining relations (see footnote 10) :

{W(ijk),W(pqr)} = 1
2 (E · E · δ)(ijk)

(pqr) + 2(E · δ · δ)(ijk)
(pqr) − 6δ(ijk)

(pqr)

{W(ijk),W(pqr)} = 0 {W(ijk),W(pqr)} = 0[
Ei

j , W̄
(k�m)

] = δj
kW̄ (i�m) + δj

�W̄ (kim) + δj
mW̄ (k�i)

[
Ei

j ,W(pqr)

] = −δi
pW(jqr) − δi

qW(pjr) − δi
rW(pqj).

(18)

Here (E · E · δ) and (E · δ · δ) are the appropriate strength 1 minimal combinations possessing
the required symmetry type (compare (3), (15) above),

(E · E · δ)(ijk)
(pqr) = (

Ei
pEj

q + Ej
pEi

q + Ei
qE

j
p + Ej

qE
i
p

)
δk

r + · · ·
(E · δ · δ)(ijk)

(pqr) = Ei
p

(
δj

qδ
k
r + δj

rδ
k
q

)
+ · · · (19)

δ(ijk)
(pqr) = δi

p

(
δj

qδ
k
r + δj

r δ
k
q

)
+ · · · .

Allowing for cyclic permutations on ijk and pqr, (E · E · δ) contains a total of 4 × 9 = 36
terms, (E · δ · δ) contains 9 × 2 = 18 terms and (δ · δ · δ) just 3 × 2 = 6 terms.

We close this section with some general remarks on ways of furnishing further specific
constructions of polynomial superalgebras. It is clear that the two rank 3 fermionic examples
generalize to arbitrary rank. In the antisymmetric {λ} = {1�} case, choose degree � monomials
in the fermionic creation and annihilation operators (giving anticommutators closing at degree
k = � − 1 in Ei

j ), and in the symmetric {λ} = {�} case, choose m = �n and define
(for odd degree �) colour singlet monomials with the appropriate rank � alternating tensor,
with anticommutators closing on degree k = � − 1 in Ei

j .
More generally, contractions with any suitable invariant tensor yield a plethora of possible

symmetry types {λ} for putative odd generators. For example, if m = pn and a symmetric
bilinear form (metric tensor) of dimension p exists, it is known that tensor powers yield
symmetry types corresponding to all partitions {λ′} of even row lengths (see appendix A.1).
The corresponding tensor contraction against a totally antisymmetric monomial

ai1A1 . . . ai�A�

thus yields a fermionic tensor of gl(n) symmetry type {λ} (with even column lengths)
corresponding to the transpose of the partition {λ′} (see appendix A.1). Similar remarks
apply to tensors constructed from an available antisymmetric bilinear form (with p even).
However, as � is necessarily even, closure with anticommutators is ‘unnatural’, and the
candidate polynomial superalgebra is of so(2n) type in this case. In principle, similar purely
bosonic constructions are available. From the discussion of the rank 1 and 2 cases, at rank 3
in the symmetric case, a polynomial super-sp(2n) algebra of the type sp3(2n/〈3〉) can be
expected, with corresponding higher-dimensional generalizations. A more general approach,
but beyond the scope of the present work, is to appeal to the well-developed theory of general
tensor invariants of arbitrary rank and symmetry type [37–40].

Despite the above flexibility and ubiquity in oscillator constructions, it is nonetheless
difficult to see how a natural candidate polynomial superalgebra for odd rank mixed symmetry
tensor types is possible (few algebras have natural primitive invariants of this type). A
final possibility worth pointing out is the use of parafermi or parabose oscillator realizations
[41, 42].11 For example, for parafermions of order p, monomials of permutation symmetry
11 Modular statistics also provide representations of colour algebras and superalgebras of general permutation
symmetry type [43].
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type of up to p columns in the mode labels can be constructed; indeed the fundamental trilinear
relation

[ai, [aj , ak]] = 0

(for any order of parafermi statistics) simply ensures that the combination ai[aj, ak] is
automatically of mixed [44] symmetry type {2, 1}. Furthermore, the structure of the
parafermionic oscillator enveloping algebra is such [45] that even monomials can be
represented as polynomials in the bilinears [ai, aj ], [ak, a�], [am, an], which are known to
generate so(2n) just as in the fermionic case [45]. Thus, the mixed symmetry rank 3 case
realized by parafermions may be a candidate so3(2n/[2, 1]) polynomial superalgebra12. For
parafermi statistics of order p, the corresponding generalized Fock space realization [45]
would form a submodule of the spinor representation

[
1
2p, 1

2p, . . . ,± 1
2p

]
of so(2n).

4. Quadratic super-gl(n) algebras gl2(n/{1} + {1̄})
In this section we develop a more complete treatment of a single class of polynomial super-
gl(n) algebras than has been possible for the more general cases. We return to analogues of
the simple Lie superalgebra sl(n/1), wherein the even part gl(n) � sl(n) + gl(1) is graded by
odd generators in the irreducible n-dimensional defining representation and its contragredient.
In the present notation, we have sl(n/1) ≡ gl1(n/{1} + {1̄}). As shown in section 3 above,
the linear case is familiar from elementary oscillator constructions, but we concentrate here
on the quadratic generalization, gl2(n/{1} + {1̄}), which cannot be so realized (except for the
special case n = 4, see below). Below, a complete account is given of structure constants and
defining relations, followed by a discussion of certain classes of irreducible representations of
these quadratic superalgebras.

Following the previous discussion of classes of structure constants, in order to write the
nonvanishing anticommutator of the odd generators in the most general way, allowing for
terms of degree 0, 1 and 2 in the gl(n) enveloping algebra, the following decompositions
should be noted (see (4) and section 2):

{1̄} · {1} = {1̄; 1} + {0}
{1̄; 1} ⊗ {2} + {1̄; 1} ⊗ {1} + {1̄; 1} ⊗ {0} = ({2̄; 2} + {1, 1; 1, 1} + 2{1̄; 1} + 2{0})

+ ({1̄; 1} + {0}) + ({0}) (20)

so that there are seven couplings (or six arbitrary coefficients up to an overall normalization).
Independent terms are most conveniently expressed in an sl(n) + gl(1) basis, for which we
introduce the generators J a

b, N̂, Q̄a,Qb, 1 � a, b, c � n defined as follows:

J a
b ≡ Ea

b − 1

n
δa

bN̂ N̂ ≡ 〈E〉 = Ec
c[

J a
b, J

c
d

] = δb
cJ a

b − δa
dJc

b
[
N̂, J a

b

] = 0
[
J a

b, Q̄
c
] = δb

cQ̄a − 1

n
δa

bQ̄
c [N̂, Q̄c] = Q̄c

[
J a

b,Qc

] = −δa
cQb +

1

n
δa

bQc [N̂,Qc] = −Qc.

(21)

Finally the general anticommutator is written in terms of six arbitrary coefficients,

{Q̄a,Qb} = (J 2)ab + a〈J 2〉δa
b + (b1N̂ + b2)J

a
b + (c1N̂

2 + c2N̂ + c)δa
b

with {Q̄a, Q̄b} = 0 = {Qa,Qb}. (22)
12 Partitions labelling irreducible representations of the symplectic (see above) and orthogonal Lie algebras are
denoted 〈λ〉, [λ], respectively. (See appendix A.1 and [26]).
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The coefficients a, b1, b2, c1, c2, c are determined by demanding that (21), (22) above are
consistent with the Jacobi identity,

[x, [y, z] = [[x, y], z] + (−1)(x)·(y)[y, [x, z]] (23)

for homogeneousx, y, z ∈ L with (x), (y) = 0̄ or 1̄ being the Z2-grading of x, y, respectively.
In view of the cyclic symmetry, there are four choices of three homogeneous elements, namely
000, 001, 011, 111, of which the first is simply the Jacobi identity for L0̄, while the second and
third express the covariance of L1̄ and {L1̄, L1̄} under adL0̄

(which has been already built into
(22)). By similar reasoning, the only nontrivial Jacobi identities involving three odd elements
are

[{Q̄a,Qb},Qc] = [Q̄a, {Qb,Qc}] − [{Q̄a,Qc},Qb] ≡ −[{Q̄a,Qc},Qb]

and similarly [{Qa, Q̄
b}, Q̄c] = −[{Qa, Q̄

c}, Q̄b]. (24)

Evaluating (24) explicitly using (21), (22) above we have

[{Q̄a,Qb},Qc] = [−(Q · J )bδ
a
c − 2a(Q · J )cδ

a
b

]
+

[
−QbJ

a
c +

(
b1 − 2

n

)
QbJ

a
c

]

+

[
(−b1)QbN̂δa

c +

(
2c1 − b1

n

)
QcN̂δa

b

]

+

[
−

(
b2 − 1

n

)
Qbδ

a
c +

(
1

n2
− (n2 − 1)

n
a − 1

n
b2 − c1 + c2

)
Qcδ

a
b

]

where (Q · J )a ≡ QbJ
b
a. Similarly

[{Q̄a,Qb}, Q̄c] = [
(J · Q̄)aδc

b + 2a(J · Q̄)cδa
c

]
+

[
Q̄aJ c

b −
(
b1 − 2

n

)
Q̄cJ a

b

]

+

[
b1N̂Q̄aδc

b −
(

2c1 − b1

n

)
N̂Q̄cδa

b

]

+

[(
b2 − 1

n

)
Q̄aδc

b −
(

1

n2
− (n2 − 1)

n
a − 1

n
b2 − c1 + c2

)
Q̄cδa

b

]

with (J · Q̄)a ≡ J a
bQ̄

b. Imposing (24) yields

a = −1

2
b1 = −n − 2

n (25)
c1 = (n − 1)(n − 2)

2n2
and

n − 1

n
b2 + c2 = −n − 1

2

with no restriction on c. Finally it is always possible to absorb b2 by means of an appropriate
shift N̂ → N̂ ′ ≡ N̂ + const11, yielding the anticommutator for the quadratic algebra uniquely
determined up to the central term,

{Q̄a,Qb} = (J 2)ab − 1

2
〈J 2〉δa

b − n − 2

n
N̂J a

b

+ δa
b

[
(n − 1)(n − 2)

2n2
N̂2 − (n − 1)

2
N̂

]
+ cδa

b11. (26)

From (25) it can be seen that a more flexible set of algebraic defining relations emerges if,
in addition to the anticommutation relations, covariant quadratic identities between the even
and odd generators exist in the enveloping algebra. It is evident in any case from section 2
and the examples of section 3, that additional Serre-type relations can be expected for the
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consistency of the nonlinear algebras in general, and the present discussion is a case in point.
Thus we impose the covariant conditions13

(J · Q̄)a = (ᾱN̂ + β̄11)Q̄a (Q · J )a = Qa(αN̂ + β11) (27)

for some constants α, β, ᾱ, β̄. This move releases the condition a = − 1
2 found above; the

remaining coefficients are determined as in (25), with modified constraints

b1 = −n − 2

n
c1 = (n − 1)(n − 2)

2n2
− (2a + 1)α

(28)
and

n − 1

n
b2 + c2 = −n − 1

2
− (2a + 1)β

and a corresponding three-parameter family gl2(n/{1} + {1̄})a,α,β of quadratic algebras.
Further remarks concerning the quadratic algebras and the significance of the parameter

α in constructing representations, are given in the conclusions (section 5 below). Note that
the quadratic antisymmetric rank 3 algebra, constructed via fermion annihilation and creation
operators in section 3, furnishes an example of this family, for the case n = 4 (with the
identification of the rank 3 antisymmetric tensor representation with the contragredient of the
defining representation for sl(4)). Define for n = 4S̄i = 1

6εijk�Qjk�, Si = 1
6εijk�Q̄

jk�, then
from (14) as shown in appendix A.4,

{S̄i, Sj } = (J 2)ab − 1
2 〈J 2〉δa

b − 1
2 N̂J a

b +
(

3
16 N̂2 − 3

4 N̂ + 2
)
δa

b

which agrees with (21), (25) for n = 4
(
a = − 1

2 , b1 = − 1
2 , c1 = 3

16

)
, together with

b2 = −1, c2 = − 3
4 . Details of the calculation, together with further consideration of the

covariant identities (27), are provided in appendix A.4.
As a final development we consider some aspects of the representation theory of the

nonlinear super-gl(n) algebras, as exemplified by the quadratic family gl2(n/{1} + {1̄})a,α,β .
Parallels with the representation theory of classical superalgebras are brought out by the
construction of induced modules,and consideration of their (a)typicality conditions. Following
Kac’s construction for type I superalgebras [46], and in particular, for sl(n/1), an analogous
induced module V̄ {λ} for gl2(n/{1} + {1̄})a,α,β may be constructed via the choice of a Borel
superalgebra B+, its associated enveloping superalgebra U+ and an arbitrary14 L0-module
V̄ 0{λ} extended trivially to B+. Then with the help of the Poincaré–Birkoff–Witt theorem we
have as usual

V̄ {λ} �
∧

(L−) ⊗ V̄ 0{λ}
or explicitly,

V̄ {λ} =
n∑

k=0

∑
a1,a2,...,ak

Qa1Qa2 · · · Qak
⊗ V̄ 0{λ}.

Introducing the highest weight vector v+, of particular interest is the vector Qn ⊗v+, which (as
it commutes with even raising operators Ea

b for 1 � a < b � n), will again be a B+-highest
weight vector, and moreover will cyclically generate an indecomposable submodule of V̄ {λ}
of highest weight different from λ, if Q̄nQn ⊗v+ = 0 (since Q̄aQn ⊗U+v

+ = {Q̄a,Qn}v+
λ = 0

for a < n). Thus a necessary condition for typicality is the nonvanishing of the eigenvalue
of {Q̄n,Qn} on v+. Similar considerations in fact apply to the hierarchy of vectors
Qn ⊗ v+,Qn−1Qn ⊗ v+, . . . (see [46]).
13 Further details of the generalization of these Serre-type relations to the cases gl2(n/{13}+{13}) and gl2(n/{3}+{3̄}),
as well as the present case, are given in appendix A.4.
14 Note that here, in contrast to the previous notation, V̄ {λ} is a Kac module based on an arbitrary L0-highest weight,
but for the fixed super-gl(n) algebra gl2(n/{1} + {1̄}).
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The connection with standard lexicographical (partition) labelling is simplest if the
anticommutation relations (26) are re-written directly in terms of the standard gl(n)-generators
Ea

b (see (21)), yielding

{Q̄a,Qb} = (E2)ab − N̂Ea
b − 1

2δa
b[〈E2〉 − N̂(N̂ − n + 1)] + cδa

b11. (29)

With the highest weight labels λ1, λ2, . . . , λn of gl(n) (eigenvalues of E1
1, E

2
2, . . . , E

n
n), for

a dominant integral weight λ such that λa − λb ∈ Z
+ for a > b, and denoting the (eigenvalues

of the) first and second degree Casimir operators by , C, we have, for example, for the
eigenvalue an of {Q̄n,Qn} by direct computation,

an = λn(λn − ) − 1
2C + 1

2( − n + 1) (30)

where the usual eigenvalues are understood:

 =
n∑

a=1

λa C =
n∑

a=1

λa(λa + n + 1 − 2a). (31)

5. Conclusions

In this paper we have made a preliminary investigation of a large class of ‘polynomial super-
gl(n) algebras’. These mimic the classical simple Lie superalgebras sl(n/1) ∼ A(n− 1, 0) in
possessing an even part gl(n) � sl(n) + gl(1), however, with odd generators in an arbitrary
representation {λ} of gl(n) and its contragredient, provided that the anticommutator of odd
generators closes on a polynomial (of degree >1) in the even generators of gl(n). A general
discussion of admissible structure constants (section 2) was exemplified by concrete fermionic
oscillator constructions in specific cases (section 3), and for gl2(n/{1} + {1̄})a,α,β (quadratic
superalgebras with odd generators in the defining n-dimensional representation of gl(n)) a
unique set of structure constants presented (section 4), together with the elements of the
construction of finite-dimensional irreducible representations.

As discussed in section 1, our polynomial superalgebras are allied to classes of nonlinear
algebras already studied in various physical settings. For example, polynomial deformations
of sl(2) of degree � including the so-called Higgs [5] case (� = 2) have been studied by
Beckers [6]; nonlinear extensions of supersymmetric quantum mechanics have been identified
in [9]. Recently a broad class of ‘polynomial Lie algebras’ has been found [10] in the context
of anharmonic interactions in second quantized descriptions of many-body systems. In [10]
the relationship of such models to integrable systems is studied. In [11], various examples
of polynomial Lie algebras were identified via their bosonic oscillator realizations. There the
abstract status of such nonlinear algebras was not taken up to the extent of systematic detailed
study of admissible Jacobi identities and structure constants,as in the present work for the super
case. However, many interesting variants of nonlinear polynomial algebras were obtained in
oscillator constructions, including a classification of the three-dimensional case (polynomial
deformations of su(2) and su(1, 1)), and results on representations. Analogous considerations
for the su(1, 1) case are implicit also in recent work on ‘K-quantum’ ladder operators and
associated coherent and squeezed states [12]. In terms of classical and quantum dynamical
systems, in [7] various quadratic Poisson–Lie symmetry algebras have been investigated
(together with quantum versions) in connection with various models of potentials admitting
separation of variables. Similarly the Askey–Wilson three-dimensional quadratic Poisson–Lie
symmetry algebra (see for example [8] and references therein) plays a key role in nonlinear
integrable systems. Finally, as noted in section 1, the super-gl(n) algebras are structurally
closely related to the nonlinear W -algebras and W -superalgebras derived from the hamiltonian
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reduction on coadjoint Lie–Poisson manifolds which have been classified and studied in recent
work [1–3]. Note that several examples of the latter which have been presented [4] can readily
be transcribed into the covariant tensor notation used in the present paper. For example, the
W -algebra defined by the regular sl(2) embedding within sl(4), 4 → 20 + 11 + 1−1 possesses
an undeformed subalgebra sl(2) + gl(1) with generators E,F,H and U, together with a pair
of doublets Ḡ± 1

2
,G± 1

2
with equal and opposite charge under U. Defining (see (A.8))

(
E1

1 E1
2

E2
1 E2

2

)
= −

(
U + H F

E U − H

)

the quadratic closure relations (8.4) of [4] read

[Ḡa,Gb] = a(E2)ab + bEa
b + cδa

b11

in complete analogy with (26). The study of the relationship between the present polynomial
superalgebras, and Hamiltonian reduction, is thus likely to shed light on their geometrical
interpretation, in relation to their applications in quantum field theory (see below). In particular,
the meaning of ‘finite’ symmetry transformations associated with deformed algebras requires
elaboration.

In recent work on non-perturbative aspects of gauge field theories, the structure of the
observable algebra has been investigated within the Hamiltonian formulation on a finite lattice
(see [15–19]), and has led to the need to study polynomial Lie superalgebras as a natural
part of the algebraic structure. For completeness we briefly mention the context of these
investigations, in order to explain the connection with the present work.

By definition, the observable algebra is the algebra of gauge invariant elements built
from field operators, satisfying the Gauss law. In a first step, this algebra can be explicitly
characterized in terms of generators and relations. Next, it has to be endowed with an
appropriate functional analytic structure and, finally, one has to classify its irreducible
representations. For quantum electrodynamics this programme has been implemented
completely. It turns out that the observable algebra naturally decomposes into a bosonic
part, which is isomorphic to a Heisenberg algebra of canonical commutation relations, and a
matter field part. For the case of spinor electrodynamics [15], the matter field part turns out to
be generated by the Lie algebra u(2N), with N denoting the number of lattice sites. For scalar
electrodynamics [16], it is generated by u(N,N). In both cases, irreducible representations
are labelled by the total electric charge, yielding a decomposition of the physical Hilbert space
into charge superselection sectors.

In the case of quantum chromodynamics (QCD), a full analysis of the structure of the
observable algebra is much more complicated (see [17–19]). Here, quark matter fields
are introduced as canonical fermionic operators ψ∗a

A(x), ψa
A(y), with a = 1, 2, . . . , s

spin α,
α̇ = 1, 2, and flavour indices, while A,B = 1, 2, 3 are su(3) colour indices and

x, y = 1, 2, . . . , N are lattice sites with N = LD for a cubic lattice in spatial dimension D.
Writing ax ≡ i, by ≡ j, . . ., natural colour invariant operators built from quark fields are then

Ei
γ,j := ψ∗i

AUA
γBψj

B (32)

Wαβγ,(ijk) := 1
6εABCUA

αDUB
βEUC

γF ψi
Dψj

Eψk
F (33)

with UA
γB denoting the parallel transporter along γ , built from the gluonic gauge fields. In

formula (32), γ denotes an arbitrary curve from x to y, whereas in (33) α, β and γ are arbitrary
curves starting at some reference point t and ending at x, y and z, respectively. The invariant
operators Ei

γ,j and Wαβγ,(ijk) represent hadronic matter of mesonic and baryonic type. These
elements, together with a set of purely gluonic invariants [18, 19] constitute a set of generators.
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This set, however, is highly redundant. There is a number of non-trivial relations between
generators, inherited from the canonical (anti)commutation relations and from the local Gauss
laws. A complete discussion of the observable algebra as an abstract algebra in terms of
generators and defining relations will be presented in [19].

A method for solving a large part of the relations consists in choosing a lattice tree.
Suppose that a tree has been fixed. Restricting ourselves then to invariant operators (32)
and (33), with α, β and γ being the unique on-tree paths and the reference point being
the lattice root, these operators coincide with generators

(
Ei

j ,W(ijk), W̄
(ijk)

)
of the algebra

gl2(n/{3} + {3̄}) discussed in section 3. A slightly delicate gauge orbit analysis, together
with some further tree techniques, enables one to further reduce the number of generators,
leading to the algebra gl2(n/{13} + {13}), defined in section 3, with gl(n)-generators given by
formula (13) and odd generators given by (12). These generators still inherit some relations,
but now the algebra has become tractable. It can be shown that it is isomorphic to the universal
enveloping algebra of sl(N/1), factorized by a certain ideal defined in terms of relations on
Casimir operators of a certain ordinary Lie superalgebra. Moreover, it is then easy to prove that
irreducible representations of this algebra are labelled by the global colour charge (triality),
built from the local colour charge densities carried by the quark field [18, 19].

One aspect of the structure of ‘composite operators’ such as the colour singlets W̄ (ijk)

which emerges from the nonlinear algebra perspective has potentially wide applicability.
Consider the reduction of degeneracy associated with states obtained by acting with monomials
in W̄ (ijk) on the vacuum, relative to what would be obtained if the W̄ (ijk),W(pqr) were
elementary fermions (see appendix A.3). In the context of the representation theory of the
polynomial super-gl(n) algebras, the reduced representation content is a natural consequence
of the Fock space realization being generically an atypical representation.

‘Gauge invariance’ is often handled by covariant BRST methods, which circumvent
noncovariant Hamiltonian approaches. However, as a purely algebraic problem, the Gauss’
law constraint can be also introduced via cohomology in Hamiltonian BRST formulations. To
this end the equicovariant formalism of [47] should be noted, wherein baryonic colour singlets
such as (33) are naturally identified as nontrivial cocycles at nonzero (but triality zero) ghost
number.

Applications of polynomial superalgebras in quantum field theory relate to spacetime
supersymmetry. In Hamiltonian lattice QCD, the quadratic superalgebra is a bona fide
fermion–boson supersymmetry between baryon and meson states15. There is a possibility that
‘no-go’ theorems for the combination of internal and spacetime symmetries—circumvented for
supersymmetry to the extent of allowing N-extended Poincaré Fermi–Bose supersymmetries
[49]—can be further relaxed for nonlinear supersymmetries. Also, in the case n = 4,
appropriate real forms of gl2(4/{1} + {1̄}) may allow various six-dimensional realizations, or
even new types of conformal supersymmetry in four dimensions (su(2, 2) � so(4, 2)). Such
superalgebras therefore add further to the resource of available generalized supersymmetries in
diverse dimensions, following, for example, [50], or recently [51] for new higher dimensional
superstring and supermembrane algebras16.

In relation to conformal and other spacetime symmetries, it should be noted that
antecedents of our polynomial algebras and superalgebras have been encountered before
in connection with representation theory. For example Barut and Bohm [13] identify certain
so-called special ‘representation relations’ which are anticommutation relations between the

15 Free field current algebras of this type within relativistic spin-flavour symmetry models were considered by
Delbourgo et al [48].
16 Parafermionic generalizations of Poincaré supersymmetry have also been considered; see [52].
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standard generators Pµ and Kµ and the Lorentz and dilatation generators Jµν and D of the
form

{Pµ,Kµ} = (a11 + bD)ηµν +
{
Jµ

σ , Jσ ν

}
which are obtained in certain classes of representation of the four-dimensional conformal
algebra so(4, 2). Similarly Bracken [14] in studying algebraic properties of the Gel’fand–
Yaglom matrices �µ in higher spin wave equations introduced analogous algebraic relations
(but without the D term) for {�µ,�ν} as a generalization of the Dirac algebra17. From
the perspective of the present work, the above relations provide instances of the structure
constants of quadratic superalgebras, in this case of the so2(3, 1/[1]) type, where the ‘odd’
generators transform as vector operators. In contrast to the original contexts, however, any
Lie algebra relations which such vector operators happen to satisfy are now relegated to the
status of specific ‘representation relations’, with the anticommutation relations regarded as
primary.

In concrete applications the general question of a representation theory for the new
polynomial superalgebras in their own right arises. In particular the existence of a tensor
category associated with coproduct and Hopf structures needs further investigation, and
the role of ‘deformations’ needs clarification. In the lattice QCD case, there is also the
possibility that interesting structures may emerge only as local entities in the thermodynamic
(N → ∞) limit. Similarly, in the spacetime supersymmetry case, the appropriate context may
be contraction limits of radii of additional dimensions, or orbifold parameters such as brane
tensions.

In sections 3 and 4 above, examples of polynomial superalgebras were found in which the
Jacobi identities are underwritten by additional covariant Serre-type relations in the enveloping
algebra. Such identities are likely to be the rule rather than the exception for the nonlinear case,
and may profoundly affect representations. A precedent for such phenomena exists in the so-
called ‘multiplet shortening’ for massless supermultiplets in N-extended supersymmetries [53].
For appropriate kinematical conditions, the (spinor) supercharges are subjected to covariant
constraints of the form Pµγ µ

α
βQβ = 0. In the usual Wigner induced representation method,

this situation is easily handled as the representations of the Abelian translation part are one
dimensional, and moreover Pµ is taken in a standard Lorentz frame. In the gl2(n/{1} + {1̄})
and other cases, the constraints are also of covariant form, Ea

bQ̄
b ∝ Q̄a , QaE

a
b ∝ Qb, but

of course the multiplier Ea
b is non-Abelian (for n = 4, if sl(4) can be identified with the real

form so(4, 2), with Q̄,Q identified with the spinor representation of the latter, the above γ ·P
term would certainly appear as one contribution to the constraint). In this connection, methods
developed in recent work [54, 32, 55] for the explicit construction of all (including atypical)
finite-dimensional irreducible modules of type I Lie superalgebras can be adapted, at least for a
class of representations of polynomial Lie superalgebras. In the ordinary Lie superalgebra case
[54], the polynomial identities satisfied by the gl(n) Gel’fand generators play a crucial role in
derivinggl(n) branching rules at each ‘floor’ of the Kac module

[ ∑n
k=0 ⊕∧k

(L−)
]⊗U+ V ().

The same method can be generalized to the polynomial super-gl(n) case; the implications of
the additional covariant Serre-type relations as constraints on the structure of the induced
modules can be ascertained in precisely this framework18. Full analysis along these lines,
especially for the polynomial superalgebras related to Hamiltonian lattice QCD, is the subject
of future development.

17 The Dirac algebra itself is of course a ‘polynomial superalgebra’ of degree zero!
18 In the tensor operator language [65], relations such as Ea

bQ̄
b = qQ̄a,QaEa

b = Qbq in the gl2(n/{1} + {1̄}) case
(and generalizations to glk(n/{λ} + {λ̄}), see appendix A.4) imply that Q̄,Q are shift operators for certain states in
the gl(n) modules {λ}, {λ̄} depending on the eigenvalue q.
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Appendix

A.1. Partition labelling for irreducible representations of gl(n) and structure constants of
polynomial super-gl(n) algebras

The use of tensor notation has been formalized by Weyl [56], Hamermesh [57] and others in
treatises on the relation between partitions and irreducible finite-dimensional representations
of the group GL(n). A central role in the character theory is played by the Schur functions,
especially as developed by Littlewood [28] for the unitary group U(n) and subgroups
SU(n),O(n) and Sp(n). Many aspects of the theory have been developed further for arbitrary
semisimple (including exceptional) Lie groups, culminating in the extensive tabulations of
[26].19 Most of the algorithms have been implemented in the group theory package ©SCHUR
[21]. Here we outline the necessary elements of the formalism for the case of finite-dimensional
irreducible representations of GL(n) required for the computation of structure constants
(section 1) and branching rules (section 3 and appendix A.2).

Finite-dimensional irreducible representations of GL(n) (corresponding to dominant
integral highest weight modules of the simple complex Lie algebra sl(n)) are labelled20

by partitions {λ} = {λ1, λ2, . . . , λ�} for non-negative integers λ1 � λ2 � · · · � λ� � 0, where
� � n is the number of parts of {λ}, and {λ} has weight or rank |λ| = λ1 + λ2 + · · · + λ�; λ is a
partition of |λ|, λ � |λ|. {λ} is represented graphically by a Young tableau, which is an array
of left-top justified rows of boxes, of lengths corresponding to the parts of {λ}.

Tensor or Kronecker products of the modules {λ} and {µ} are evaluated by the celebrated
Littlewood–Richardson rule, which gives the resolution of the product of the corresponding
characters (referred to as outer multiplication of Schur S-functions),

{λ} · {µ} =
∑

ν

Cλµ
ν{ν} (A.1)

19 Supersymmetric partition labelling and Young diagrams have also been introduced for representations of classical
superalgebras; see for example [30, 31, 58]. For an example of the organizing power of group methods in tensor
notation (applied to higher order heat kernel coefficients in curved space backgrounds) see, for example, [59]. See
[60, 61] for applications of supersymmetric Schur functions to infinite-dimensional algebras.
20 In Littlewood’s nomenclature [28, 26] the symbols {λ}, [λ], 〈λ〉 pertain to GL(n),O(n) and Sp(n), respectively.
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via the Littlewood–Richardson coefficients Cλµ
ν , where |ν| = |λ| + |µ|. Dually related is the

definition of S-function skew,

{ν/λ} =
∑

µ

Cλµ
ν{µ} (A.2)

where the sum is over all {µ} such that {λ} · {µ} � {ν}, with the coefficient in the skew being
given by the appropriate product multiplicity.

Various other S-function operations are needed for the manipulation of group
representations and branching rules. Important is the inner S-function product, defined for
partitions of equal rank, |λ| = |µ|,

{λ} ◦ {µ} =
∑

ν

�λµ
ν{ν}

where |ν| = |λ| = |µ|, which gives the resolution of the corresponding product of characters
(tensor product of representations) of the symmetric group. Finally there is the S-function
plethysm {λ} ⊗ {µ} which resolves the tensor product of the irreducible representation {λ}
with itself, |µ| times, into its projection of symmetry type µ, with respect to the action of the
permutation group S|µ| on the factor spaces.

The manifest advantage of partition notation, even with its more complicated extension to
orthogonal and symplectic groups and even exceptional groups (see [26]), is its general feature
of being rank-independent for groups of large enough dimension, and generic representations.
Any corrections for specific groups (such as say SU(3) or SO(10)), are done by means of
group-dependent modification rules which rule out illegal partitions resulting from general
algorithms, and in some cases relate characters specified by non-standard partitions to standard
ones, up to signs (which must be collected at the end of a calculation).

The major modification rule for GL(n) is simply that partitions of more than n parts
(diagrams with more than n rows) vanish identically. In addition, for SL(n), columns of length
n can be deleted. When dealing with both covariant and contravariant representations of
GL(n), it is natural to introduce a more flexible mixed or composite partition notation {λ̄; µ}
which represents a tensor of mixed contravariant and covariant rank |λ|, |µ| respectively,
but for which all tensor contractions between upper and lower indices vanish [27]. Standard
partitions of this type have total number of parts (rows of λ and µ) at most n, and are equivalent
to canonical pure covariant or pure contravariant irreducible representations up to powers of
the one-dimensional alternating character (the determinant). Non-standard partitions of mixed
type are either zero (for example if the number of parts is identically n+1) or modify in specific
ways to standard tableaux. We do not require the general rules (see [26] and [27]), which have
been implemented in ©SCHUR [21].

The most obvious application of the composite notation is in handling the n2-dimensional
adjoint representation of GL(n). Technically this is isomorphic to the tensor product of the
defining representation {1} and its contragredient {1̄}, written as

{1̄} · {1} = {1̄; 1} + {0}
with {1̄; 1} representing the traceless part (the adjoint representation of SL(n)), and {0} the
trace (the linear Casimir invariant). See section 4, (21) for the explicit reduction. For the
familiar case of SU(3), the composite notation is convenient, in that all finite-dimensional
irreducible representations can be specified by symmetrized tensors of mixed type. For
example, {2̄} ≡ {22} ≡ 6̄, {2̄; 2} ≡ {4, 2} ≡ 27, and the product

{2̄} · {2} = {2̄; 2} + {1̄; 1} + {0}
corresponds to the reduction

6̄ × 6 = 27 + 8 + 1.
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We now formalize the above and other required tensor product and branching rules
required in sections 2 and 3. For the tensor product of contravariant and covariant irreducible
representations we have

{λ̄} · {µ} =
∑

α

{λ/α; µ/α} (A.3)

where the skew is performed with respect to all legal {α}, and the expansion of the skew via
(A.2) is done distributively.

For the decomposition of an irreducible representation of GL(pq) with respect to
GL(p) × GL(q) we have

{λ} ↓
∑
σ�|λ|

{σ } × {σ ◦ λ}. (A.4)

In particular, if {λ} = {�}, then {σ ◦ λ} = {σ } as {�} labels the trivial representation of S�.
Alternatively if {λ} = {1�}, then {σ ◦ λ} = {σ ′}, the partition transpose to {σ ′} (with rows and
columns interchanged) as {1�} is the one-dimensional alternating character of S�.

The rules for symmetric function plethysm have been developed by Littlewood (see
appendix to [28]) and others; see for example [62–64]. The algorithm for plethysm is
implemented in the group theory package ©SCHUR [21]. However, for the applications needed
in section sections 2 and 4 above, the following rules suffice for the evaluation of low-rank
cases21:

{1̄} · {1} ⊗ {�} =
∑
σ��

{σ̄ } · {σ } =
∑
σ��

∑
α

{σ/α; σ/α} (A.5)

whereas for the irreducible part

{1̄; 1} ⊗ {�} ↑ ({1̄} · {1} − {0}) ⊗ {�}
=

∑
m

(−1)m({1̄} · {1}) ⊗ {� − m} · {0} ⊗ {m}

=
∑
m

(−1)m
∑

σ��−m

{σ̄ } · {σ } ↓
∑
m

(−1)m
∑

σ��−m

∑
α

{σ/α; σ/α}. (A.6)

From (A.5) it is evident in comparison with (2) and (A.1) that

nk
µν =

∑
α�k,γ

Cγµ
αCγν

α nλ
µν =

∑
γ

Cγµ
λCγν

λ (A.7)

from which nk
µν � nλ

µν provided k � �.

A.2. Generalized Gel’fand notation for gl(n) defining relations and structure constants of
polynomial super-gl(n) algebras

We reiterate briefly here for the case of gl(n), a framework for the theory of characteristic
identities for semisimple Lie algebras, which puts the Gel’fand notation for the defining
relations in a broader context, and has been used in an essential way for the resolution of the
structure of atypical modules of type I classical superalgebras.

Taken as a whole, within a certain (irreducible) representation, the array of Gel’fand
generatorsEa

b, 1 � a, b � n can be regarded as an invariant E ∈ π(gl(n)) ⊗ End(Cn), where
C

n ≡ V {1} is the irreducible n-dimensional defining representation, and π : gl(n) → End(V)

21 Note that the alternating signs in the final expression are typical of the outcome of Schur function manipulations,
where a final positive sum of characters is only apparent after modification rules and cancellations have been accounted
for.
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is an algebra homomorphism for some gl(n)-moduleV . The corresponding degree k invariants
Ek within π(U(gl(n))) ⊗ End(V {1}), are nothing but the above matrix powers (Ek)ab of the
array of Gel’fand generators; the traces 〈Ek〉 are of course the standard Casimir operators
of gl(n).

This construction generalizes to an invariant E ∈ π(gl(n)) ⊗ End(V {λ}) for an arbitrary
irreducible representation {λ}. The matrix elements with respect to a basis of V {λ} of
Ek ∈ π(U(gl(n))) ⊗ End(V {λ}) will provide precisely the leading unique degree k coupling
for the polynomial superalgebra, and moreover related partial traces enable the remaining
lower degree couplings to be enumerated in accord with the above counting schemes.

Let C be the second-order Casimir invariant (see (31) above). The general definition of E
is

E = 1

2
(π ⊗ 11) ◦ (�(C) − C ⊗ 11 − 11 ⊗ C). (A.8)

Finally, if ea ⊗ eb ⊗ · · · are an (appropriately symmetrized) basis for V {λ}, then the set of
gl(n) generators in generalized Gel’fand notation is defined by the the matrix elements

Eabc...
pqr... = (ea ⊗ eb ⊗ · · · , Eep ⊗ eq ⊗ · · ·) (A.9)

as operators in End(V).22

A.3. Decomposable representations of gl2(n/{3} + {3̄})
The examples of oscillator realizations which we have considered not only provide the
defining relations of various types of polynomial super-gl(n) algebras, but also furnish
examples of representations. In the fermionic case there are thus finite-dimensional, generally
decomposable, super-gl(n) representations in Fock space, via the usual action, and in the
associated Clifford algebra, via the adjoint action. In this appendix we study the case
gl2(n/{3} + {3̄}). The relevant state space and adjoint operators are classified in the general
case, and for concreteness the results for the simplest cases n = 1, n = 2 are listed explicitly.

As discussed in section 3 above, within the m = 6n-dimensional Clifford algebra
generated by the fermionic creation and annihilation operators aiA, ajB, gl2(n/{3} + {3̄}) is
generated by W̄ (ijk),W(pqr), and Ei

j realized as colour traces. The total Fock space is as usual
an irreducible spinor representation of so(6n) ⊃ gl(3n), and the Clifford algebra is embedded
naturally as all endomorphisms on this space; taking account of the grading, therefore, we
have gl(n/{3} + {3̄})2 ⊂ C�(6n) ⊂ gl(23n−1/23n−1).

Given normal ordering conventions, and the usual construction of states using creation
modes applied to the vacuum state, the problem of classifying colour singlet states in Fock
space is in fact a sub-case of that of identifying all colour-singlet operators. In general, we
consider the reduction of the tensor representation of gl(3n), corresponding to the product

Xi1A1i2A2 ...iKAK
p1B1p2B2...pLBL

= ai1A1ai2A2 . . . aiKAK ap1B1ap2B2 . . . apLBL

22 The above formalism has been used to derive polynomial characteristic identities for generators of Lie algebras and
superalgebras. See [65] for original works (see also [66]), and [67, 58] for extensions to superalgebras. For abstract
approaches see [68–70]. For the relationship of the construction to Casimir invariants of arbitrary degree see [38,
39]. For the role of Yangians in relation to Laplace operators for Lie algebras and noncommutative characteristic
polynomials see [40]. For the relation to the Goddard–Kent–Olive construction [71] in the affine case see [72].
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to gl(3) + gl(n), with the identification of sl(3) singlets (colour invariant states correspond
to the L = 0 case)23. This is a standard group reduction problem24, and can be efficiently
handled via the extended partition labelling (see appendix A.1 above, and [26]), resulting in

gl(3n) ↓ gl(3) + gl(n) {1K} · {1L} ↓
∑

ρ�K,σ�L

{ρ ′} · {σ ′} × {ρ̄} · {σ } (A.10)

where 0 � K,L � 3n, and {ρ ′}, {σ ′} are the transpose partitions to {ρ ′}, {σ ′} such that
in the permutation groups SK, SL we have {ρ ′ ◦ ρ} � {1K}, and similarly {σ ′ ◦ σ } � {1L}
(see appendix A.1, and [26]). Using the usual restrictions that partitions represent nonzero
characters of gl(n) provided they have at most n rows, it can be seen from (A.10) that both ρ

and σ must fall within a rectangular envelope of standard shape 3 × n. Finally, the right-hand
side of (A.10) should be reduced with respect to sl(3), which entails the further modification
rule that columns of ρ ′, σ ′ of length 3 can be removed. Thus for K = 0, the branching rule
gives an sl(3) singlet provided {σ } = {3r}, r = 0, 1, 2, . . . , n (‘multi-baryons’), and similarly
for L = 0 we have {ρ̄} = {3r}, r = 0, 1, 2, . . . , n (‘multi anti-baryons’, respectively). For
both K,L �= 0, we count sl(3) colour singlets within {ρ ′} · {σ ′} for legal partitions ρ ′, σ ′

within the n × 3 rectangle. The relevant branching rule is (see appendix A.1 and [26])

{ρ ′} · {σ ′} ↓
∑

α

{ρ ′/α; σ ′/α}

where the sum is over all partitions α whose skew with both ρ ′, σ ′ is nonvanishing. Obviously,
the sum contains a singlet if and only if ρ = σ (skewing by α = ρ = σ leads to the trivial
representation). For K = L this immediately gives a classification of all ‘meson’ colour
singlets within gl(n), classified by the reduction of {σ̄ } · {σ } for σ within the standard 3 × n

rectangular envelope. For K > L or K < L the same theorem applies, but the equality of ρ

and σ may arise as a result of modification by dropping columns of length 3. This provides a
classification of all ‘exotic baryons and anti-baryons’, according to gl(n) multiplets arising in
the reduction of {3r � λ} · {3s � λ}, where r �= s, 0 � r, s � n, where λ lies within a truncated
2× (n− t) rectangular envelope, where t = max(s, t) and the notation {3r � λ} indicates that λ

is appended below the relevant rectangular block of depth r. This classification in fact includes
the previous K = 0 and L = 0 cases, which appear as either r = 0, λ = φ, or s = 0, λ = φ,
respectively.

The above colour singlet states and operators are easy to enumerate explicitly for the
lowest cases n = 1 and n = 2. For the former, from the general result of section 3, the
polynomial superalgebra is isomorphic to gl(1/1), so the classification of states and operators
can, at the same time, be viewed as a list of gl(1/1) representations. The colour singlet states
and operators are given in table 1.

For n = 2, table 2 provides a list of colour sl(3) singlet gl(2) representations {σ̄ } · {σ },
{ρ̄} · {σ }, for meson, baryon, exotic baryon and dibaryon operators, and conjugates. From the
partitions, it is easy to reconstruct the parameters r, s and λ used above; the fermion content
(K,L) of each state or operator is given, together with the sl(2) spin content (written as a
reducible representation j × k corresponding to the reduction of {ρ̄} and {σ } respectively),
together with the dimension N = (2j + 1)(2k + 1).

23 In the context of physical applications the relevant symmetry groups are in the unitary chain, and the colour
transformations belong to SU(3). Here we merely count singlets of sl(3).
24 Corresponding to the reduction of the spinor representation of so(6n) under branching chain so(6n) ⊃ gl(3n) ⊃
gl(3) + gl(n).
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Table 1. Colour singlet composite operators for gl2(1/{3} + {3̄}) � gl(1/1), listed by fermion
content (K,L) and gl(1) content {K̄} · {L} (one-dimensonal representations with gl(1) quantum
number K − L). Mesons have K = L and baryons have K = 0 or L = 0. The adjoint module
has even dimension 4 and odd dimension 2 (including the two odd and two even generators of
gl(1/1)).

(K,L) {K̄} · {L}
(0, 0) {0̄} · {0}
(1, 1) {1̄} · {1}
(2, 2) {2̄} · {2}
(3, 3) {3̄} · {3}
(0, 3) {0̄} · {3}
(3, 0) {3̄} · {0}

Table 2. Colour singlet composite operators for gl2(2/{3} + {3̄}), listed by fermion content
(K,L), gl(2) content {ρ̄} · {σ } for partitions in the standard 3 × (n = 2) rectangular envelope and
sl(2) spin content j × k with dimension N = (2j + 1)(2k + 1). Mesons have K = L, baryons
and dibaryons and their conjugates have K = 0 or L = 0 and exotic baryons have K > L > 0
or L > K > 0. The adjoint module has even dimension 52 and odd dimension 40 (including the
eight odd and four even generators).

(K,K) {σ̄ } · {σ } j × j N (K,L) {ρ̄} · {σ } j × k N

(0, 0) {0̄} · {0} 0 × 0 1 (0, 3) {0̄} · {3} 0 × 3
2 4

(1, 1) {1̄} · {1} 1
2 × 1

2 4 (3, 0) {3̄} · {0} 3
2 × 0 4

(2, 2) {2̄} · {2} 1 × 1 9 (1, 4) {1̄} · {3, 1} 1
2 × 1 6

{12} · {12} 0 × 0 1 (2, 5) {2̄} · {3, 2} 1 × 1
2 6

(3, 3) {3̄} · {3} 3
2 × 3

2 16 (3, 6) {3̄} · {32} 3
2 × 0 4

{2, 1} · {2, 1} 1
2 × 1

2 4 (4, 1) {3, 1} · {1} 1 × 1
2 6

(4, 4) {3, 1} · {3, 1} 1 × 1 9 (5, 2) {3, 2} · {2} 1
2 × 1 6

{2, 2} · {2, 2} 0 × 0 1 (6, 3) {32} · {3} 0 × 3
2 4

(5, 5) {3, 2} · {3, 2} 1
2 × 1

2 4 (0, 6) {0̄} · {32} 0 × 0 1

(6, 6) {3, 3} · {3, 3} 0 × 0 1 (6, 0) {32} · {0} 0 × 0 1

A.4 Relation between gl2(4/{13} + {13}) and gl2(4/{1} + {1̄})a,α,β

The approach of section 4was to analyse abstractly the defining relations of the gl2(n/{1} + {1̄})
family of quadratic algebras in order to establish properties of the admissible structure constants
in the absence of a particular realization. Here we reverse this philosophy and show,for the case
n = 4, the relation between the previously considered (fermionic oscillator) gl2(4/{13}+ {13})
construction and gl2(4/{1} + {1̄})a,α,β .

Consider then the generators Q̄ijk,Qpqr of gl2(4/{13} + {13}) as in (14), but with the
modification that the odd generators transform as tensor densities of weight w,[

Ei
j , Q̄

[k�m]
] = δj

kQ̄[i�m] + δj
�Q̄[kim] + δj

mQ̄[k�i] + wδi
j Q̄

[k�m]

[
Ei

j ,Q[pqr]
] = −δi

pQ[jqr] − δi
qQ[pjr] − δi

rQ[pqj ] − wδi
jQ[pqr].

(A.11)

Then, defining

S̄i = 1
6εijk�Qjk� Qjk� = −εjk�mS̄m

Si = 1
6εijk�Q̄

jk� Q̄jk� = −εijk�S�

(A.12)

produces [
Ei

j , S̄
k
] = δk

j S̄i − (1 + w)δi
j S̄k (A.13)
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[
Ei

j , Sk

] = −δi
kSj + (1 + w)δi

j Sk (A.14)

so that the choice w = −1 leads to standard tensor transformation rules for the rank 1 odd
generators S, S̄. Proceeding with (A.12) produces

{S̄i, Sj } = 1
6 [−3{Q̄[ik�],Q[jk�]} + δi

j {Q̄[k�m],Q[k�m]]

and use of the structure constants (14) together with the standard definitions (21) leads after
use of (22) to the quoted form

{S̄i, Sj } = (J 2)ab − 1
2 〈J 2〉δa

b − 1
2 N̂J a

b +
(

3
16 N̂2 − 3

4 N̂ + 2
)
δa

b

which agrees with (21), (25) for n = 4
(
a = − 1

2 , b1 = − 1
2 , c1 = 3

16

)
, together with

b2 = −1, c2 = − 3
4 .

Finally, we comment on the role of the covariant constraints (27) in this case, and
generalizations to other cases. Firstly, for the antisymmetric rank 3 case gl2(n/{13} + {13}),
in the realization (14) via fermionic oscillator modes, we have directly from (12), (13)
that

Ei
mQ̄[mjk] + Ej

mQ̄[mki] + Ek
mQ̄[mij ] = (−3N̂ + 3(n + 1)11)Q̄[ijk]

Q[ijm]E
m

k + Q[jkm]E
m

i + Q[kim]E
m

j = Q[ijk](−3N̂ + 3(n + 1)11).
(A.15)

Similarly in the symmetric rank 3 case gl2(n/{3} + {3̄}) we have from (16), (17) that

Ei
mW̄ (mjk) + Ej

mW̄ (mki) + Ek
mW̄ (mij) = (N̂ − 3(n − 3)11)W̄ (ijk)

W(ijm)E
m

k + W(jkm)E
m

i + W(kim)E
m

j = W(ijk)(N̂ − 3(n − 3)11).
(A.16)

which reflect the identity (true for any su(3) tensor TA)

εABCTD − εBCDTA + εCDATB − εDABTC = 0.

Note that the left-hand sides of (A.15), (A.16) can be expressed in the form of the action of
the invariants (A.9) on the appropriate odd generators (that is, the matrix action of the set of
generalized Gel’fand basis generators of gl(n) on Q, Q̄, and W , W̄ ), respectively. Finally for
S, S̄ as in (A.12), and Ei

j defined as in (13), we have directly from (A.14) with w = −1,
(A.15) that

(E · S̄)i = (4N̂ − 1511)S̄i (S · E)i = Si(4N̂ − 1511) (A.17)

However, as is evident from (25), (28), in the case a = − 1
2 , the structure coefficients are

independent of the particular form of the constraint.
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